DESIGN Of F~22 RAPTOR
Overview
F-22 flying with its F119-PW-100 engines on full afterburner during testing |
The aircraft's dual Pratt & Whitney F119-PW-100 afterburning turbofan engines are closely spaced and incorporate pitch-axis thrust vectoring nozzles with a range of ±20 degrees; each engine has maximum thrust in the 35,000 lbf (156 kN) class.The F-22's thrust to weight ratio in typical combat configuration is nearly at unity in maximum military power and 1.25 in full after burner.Maximum speed without external stores is estimated to be Mach 1.82 during supercruise and greater than Mach 2 with afterburners.
The F-22 is among only a few aircraft that can supercruise, or sustain supersonic flight without using fuel-inefficient afterburners; it can intercept targets which subsonic aircraft would lack the speed to pursue and an afterburner-dependent aircraft would lack the fuel to reach.The Raptor's high operating altitude is also a significant tactical advantage over prior fighters.The use of internal weapons bays permits the aircraft to maintain comparatively higher performance over most other combat-configured fighters due to a lack of aerodynamic drag from external stores. The F-22's structure contains a significant amount of high-strength materials to withstand stress and heat of sustained supersonic flight. Respectively, titanium alloys and composites comprise 39% and 24% of the aircraft's structural weight.
The Raptor's aerodynamic performance, sensor fusion, and stealth work together for increased effectiveness. Altitude, speed, and advanced active and passive sensors allow the aircraft to spot targets at considerable ranges and increase weapons range; altitude and speed also complement stealth's ability to increase the aircraft's survivability against ground defenses such as surface-to-air missiles.
Avionics
Key avionics include BAE Systems EI&S AN/ALR-94 radar warning receiver (RWR),[Lockheed Martin AN/AAR-56 infrared and ultraviolet Missile Launch Detector (MLD) and Northrop Grumman AN/APG-77 active electronically scanned array (AESA) radar. The MLD features six sensors to provide full spherical infrared coverage. The RWR is a passive radar detector with more than 30 antennas blended into the wings and fuselage for all-round coverage. Tom Burbage, former F-22 program head at Lockheed Martin, described it as "the most technically complex piece of equipment on the aircraft." The range of the RWR (250+ nmi) exceeds the radar's, and can cue radar emissions to be confined to a narrow beam (down to 2° by 2° in azimuth and elevation) to increase stealth. Depending on the detected threat, the defensive systems can prompt the pilot to release countermeasures such as flares or chaff. According to Bill Sweetman, experts had said the ALR-94 can be used as a passive detection system capable of searching targets and providing enough information for a radar lock on.The AN/APG-77 AESA radar |
The F-22's ability to operate close to the battlefield gives the aircraft threat detection and identification capability comparative with the RC-135 Rivet Joint, and the ability to function as a "mini-AWACS", though the radar is less powerful than those of dedicated platforms. The F-22 can designate targets for allies, and determine whether two friendly aircraft are targeting the same aircraft. This radar system can sometimes identify targets "many times quicker than the AWACS".The IEEE 1394B bus developed for the F-22 was derived from the commercial IEEE 1394 "FireWire" bus system. In 2007, the F-22's radar was tested as a wireless data transceiver, transmitting data at 548 megabits per second and receiving at gigabit speed, far faster than the Link 16 system.
The F-22's software has some 1.7 million lines of code, the majority involving processing radar data.] Former Secretary of the USAF Michael Wynne blamed the use of the DoD's Ada for cost overruns and delays on many military projects, including the F-22. Cyberattacks on subcontractors have reportedly raised doubts about the security of the F-22's systems and combat-effectiveness. In 2009, former Navy Secretary John Lehman considered the F-22 to be safe from cyberattack, citing the age of its IBM software.
Cockpit
Cockpit of the F-22, showing instruments, head up display and throttle top (lower left) |
The F-22 has integrated radio functionality, the signal processing systems are virtualized rather than as a separate hardware module. There have been several reports on the F-22's inability to communicate with other aircraft, and funding cuts have affected the integration of the Multifunction Advanced Data Link (MADL).Voice communication is possible, but not data transfer.
The integrated control panel (ICP) is a keypad system for entering communications, navigation, and autopilot data. Two 3 in × 4 in (7.6 cm × 10.2 cm) up-front displays located around the ICP are used to display integrated caution advisory/warning data, communications, navigation and identification (CNI) data and also serve as the stand-by flight instrumentation group and fuel quantity indicator.The stand-by flight group displays an artificial horizon, for basic instrument meteorological conditions. The 8 in × 8 in (20 cm × 20 cm) primary multi-function display (PMFD) is located under the ICP, and is used for navigation and situation assessment. Three 6.25 in × 6.25 in (15.9 cm × 15.9 cm) secondary multi-function displays are located around the PMFD for tactical information and stores management.
The ejection seat is a version of the ACES II (Advanced Concept Ejection Seat) commonly used in USAF aircraft, with a center-mounted ejection control.The F-22 has a complex life support system, which includes the on-board oxygen generation system (OBOGS), protective pilot garments, and a breathing regulator/anti-g (BRAG) valve controlling flow and pressure to the pilot's mask and garments. The pilot garments were developed under the Advanced Technology Anti-G Suit (ATAGS) project and are to protect against chemical/biological hazards and cold-water immersion, counter g-forces and low pressure at high altitudes, and provide thermal relief. Suspicions regarding the performance of the OBOGS and life support equipment have been raised by several mishaps, including a fatal crash.
Armament
AIM-120 AMRAAM (right) fitted in a weapons bay of an F-22 |
Front fuselage detail of an F-22 |
F-22 with external weapons pylons |
While the F-22 typically carries weapons internally, the wings include four hardpoints, each rated to handle 5,000 lb (2,300 kg). Each hardpoint can accommodate a pylon that can carry a detachable 600-gallon (2,270 L) external fuel tank or a launcher holding two air-to-air missiles; the two inboard hardpoints are "plumbed" for external fuel tanks. The use of external stores degrades the aircraft's stealth and kinematic performance; after releasing stores the external attachments can be jettisoned to restore those characteristics.A stealthy ordnance pod and pylon was being developed to carry additional weapons in the mid-2000s.
Stealth
For stealth, the F-22 carries weapons in internal bays. The doors for the center and side bays are open; the six LAU-142/A AMRAAM Vertical Eject Launchers (AVEL) are visible. |
Compared to previous stealth designs like the F-117, the F-22 is less reliant on radar-absorbent materials, which are maintenance-intensive and susceptible to adverse weather conditions. Unlike the B-2, which requires climate-controlled hangars, the F-22 can undergo repairs on the flight line or in a normal hangar. The F-22 features a Signature Assessment System which delivers warnings when the radar signature is degraded and necessitates repair.The F-22's exact radar cross-section (RCS) is classified; however, in 2009 Lockheed Martin released information indicating it has an RCS (from certain angles) of −40 dBsm – equivalent to the radar reflection of a "steel marble". Effectively maintaining the stealth features can decrease the F-22's mission capable rate to 62–70%.
The effectiveness of the stealth characteristics is difficult to gauge. The RCS value is a restrictive measurement of the aircraft's frontal or side area from the perspective of a static radar. When an aircraft maneuvers it exposes a completely different set of angles and surface area, potentially increasing radar observability. Furthermore, the F-22's stealth contouring and radar absorbent materials are chiefly effective against high-frequency radars, usually found on other aircraft. The effects of Rayleigh scattering and resonance mean that low-frequency radars such as weather radars and early-warning radars are more likely to detect the F-22 due to its physical size. However, such radars are also conspicuous, susceptible to clutter, and have low precision.Additionally, while faint or fleeting radar contacts make defenders aware that a stealth aircraft is present, reliably vectoring interception to attack the aircraft is much more challenging. According to the USAF an F-22 surprised an Iranian F-4 Phantom II that was attempting to intercept an American UAV, despite Iran's claim of having military VHF radar coverage over the Persian Gulf.
Operational history
Designation and testing
An F-22 refuels from a KC-135 during testing; the attachment on the back top is for a spin recovery chute |
Flight testing of the F-22 began in 1997 with Raptor 4001, the first EMD jet, and eight more F-22s would participate in the EMD and flight test program.Raptor 4001 was retired from flight testing in 2000 and subsequently sent to Wright-Patterson Air Force Base (AFB) for survivability testing, including live fire testing and battle damage repair training. EMD F-22s have been used for testing upgrades, and also as maintenance trainers. The first production F-22 was delivered to Nellis AFB, Nevada, in January 2003.
In May 2006, a released report documented a problem with the F-22's forward titanium boom, caused by defective heat-treating. This made the boom on roughly the first 80 F-22s less ductile than specified and potentially shortened the part's life. Modifications and inspections were implemented to the booms to restore life expectancy.
In August 2008, an unmodified F-22 of the 411th Flight Test Squadron performed in the first ever air-to-air refueling of an aircraft using synthetic jet fuel as part of a wider USAF effort to qualify aircraft to use the fuel, a 50/50 mix of JP-8 and a Fischer–Tropsch process-produced, natural gas-based fuel.In 2011, an F-22 flew supersonic on a 50% mixture of biofuel derived from camelina.
Introduction into service
An F-22 fires an AIM-120 AMRAAM |
The Raptor achieved Full Operational Capability (FOC) in December 2007, when General John Corley of Air Combat Command (ACC) officially declared the F-22s of the integrated active duty 1st Fighter Wing and Virginia Air National Guard 192d Fighter Wing fully operational.This was followed by an Operational Readiness Inspection (ORI) of the integrated wing in April 2008, in which it was rated "excellent" in all categories, with a simulated kill-ratio of 221–0.
Deployments
In November 2007, F-22s of 90th Fighter Squadron at Elmendorf AFB, Alaska, performed their first NORAD interception of two Russian Tu-95MS "Bear-H" bombers. Since then, F-22s have also escorted probing Tu-160 "Blackjack" bombers.The first pair of F-22s assigned to the 49th Fighter Wing became operational at Holloman AFB, New Mexico, in June 2008. In 2014, Holloman F-22s and their support personnel were reassigned to the reactivated 95th Fighter Squadron at Tyndall AFB.
Secretary of Defense Gates initially refused to deploy F-22s to the Middle East in 2007. The type made its first deployment in the region at Al Dhafra Air Base in the UAE in 2009. In April 2012, F-22s have been rotating into Al Dhafra Air Base, less than 200 miles from Iran; the Iranian defense minister referred to the deployment as a security threat. In March 2013 the USAF announced that an F-22 had intercepted an Iranian F-4 Phantom II that approached within 16 miles of an MQ-1 Predator flying off the Iranian coastline.
An F-22 of the 43d Fighter Squadron alongside an F-15 Eagle of the 27th Fighter Squadron, 2005 |
On 22 September 2014, F-22s performed the type's first combat sorties during the American-led intervention in Syria; a number of aircraft dropped 1,000-pound GPS-guided bombs on Islamic State targets in the vicinity of Tishrin Dam. Combat operations by F-22s are planned to continue into the foreseeable future. While some missions involve striking targets, the F-22's main role is intelligence, surveillance and reconnaissance (ISR) gathering. By January 2015, the F-22 accounted for three percent of Air Force sorties during Operation Inherent Resolve. General Mike Hostage of ACC said that it performed "flawlessly" during this deployment. Between September 2014 and July 2015, F-22s flew 204 sorties over Syria, dropping 270 bombs at some 60 locations. On 23 June 2015, a pair of F-22s performed the aircraft's first close air support (CAS) mission after receiving a short-notice request for airstrikes in close proximity to friendly forces.
An F-22 refueling prior to combat operations in Syria, September 2014 |
On 19 August 2016, two F-22s intercepted two Syrian Su-24 strike aircraft over Hasakah, Syria, following SyAAF attacks on U.S.-backed Kurdish forces in and around the city.
Maintenance and training
F-22 aircraft were available for missions 62% of the time on average in 2004 and 70% in 2009. The rate was at 63% in 2015. Early on, the F-22 required more than 30 hours of maintenance per flight hour and a total cost per flight hour of $44,000; by 2008 it was reduced to 18.1, and 10.5 by 2009; lower than the Pentagon's requirement of 12 maintenance hours per flight hour. When introduced, the F-22 had a Mean Time Between Maintenance (MTBM) of 1.7 hours, short of the required 3.0; in 2012 this rose to 3.2 hours. By 2013, the cost per flight hour was $68,362, over three times as much as the F-16. In 2014, the F-22 fleet required 43 maintenance man-hours per flight hour.Each aircraft requires a month-long packaged maintenance plan (PMP) every 300 flight hours.The stealth system, including its radar absorbing metallic skin, account for almost one third of maintenance. The canopy was redesigned after the original design lasted an average of 331 hours instead of the required 800 hours. F-22 depot maintenance is performed at Ogden Air Logistics Complex at Hill AFB, Utah.
In January 2007, the F-22 reportedly maintained 97% sortie rate, flying 102 out of 105 tasked sorties while amassing a 144-to-zero kill ratio during "Northern Edge" air-to-air exercises in Alaska. According to Lieutenant Colonel Wade Tolliver, squadron commander of the 27th Fighter Squadron, the stealth coatings of the F-22 are more robust than those used in earlier stealth aircraft, being less sensitive to weather and wear and tear. However, rain caused "shorts and failures in sophisticated electrical components" when F-22s were posted to Guam.
To reduce operating costs and lengthen the F-22's service life, some pilot training sorties are performed using flight simulators, while the T-38 Talon is used for adversary training. DoD budget cuts led to F-22 demonstration flights being halted in 2013 before resuming in 2014. In 2012, it was reported that the F-22's maintenance demands have increased as the fleet aged, the stealth coatings being particularly demanding.
Operational problems
Operational problems have been experienced and some have caused fleet-wide groundings. Critically, pilots have experienced a decreased mental status, including losing consciousness. There were reports of instances of pilots found to have a decreased level of alertness or memory loss after landing. F-22 pilots have experienced lingering respiratory problems and a chronic cough; other symptoms include irritability, emotional lability and neurological changes. A number of possible causes were investigated, including possible exposure to noxious chemical agents from the respiratory tubing, pressure suit malfunction, side effects from oxygen delivery at greater-than-atmospheric concentrations, and oxygen supply disruptions. Other problems include minor mechanical problems and navigational software failures. The fleet was grounded for four months in 2011 before resuming flight, but reports of oxygen issues persisted.In 2005, the Raptor Aeromedical Working Group, a USAF expert panel, recommended several changes to deal with the oxygen supply issues. In October 2011, Lockheed Martin was awarded a $24M contract to investigate the breathing difficulties. In July 2012, the Pentagon concluded that a pressure valve on flight vests worn during high-altitude flights and a carbon air filter were likely sources of at least some hypoxia-like symptoms. Long-distance flights were resumed, but were limited to lower altitudes until corrections had been made. The carbon filters were changed to a different model to reduce lung exposure to carbon particulates. The breathing regulator/anti-g (BRAG) valve, used to inflate the pilot's vest during high G maneuvers, was found to be defective, inflating the vest at unintended intervals and restricting the pilot's breathing. The on-board oxygen generating system (OBOGS) also unexpectedly reduced oxygen levels during high-G maneuvers. In late 2012, Lockheed Martin was awarded contracts to install a supplemental automatic oxygen backup system, in addition to the primary and manual backup. Changes recommended by the Raptor Aeromedical Working Group in 2005 received further consideration in 2012; the USAF reportedly considered installing EEG brain wave monitors on the pilot's helmets for inflight monitoring.
New backup oxygen generators and filters have been installed on the aircraft. The coughing symptoms have been attributed to acceleration atelectasis, which may be exacerbated by the F-22's high performance; there is no present solution to the condition. The presence of toxins and particles in some ground crew was deemed to be unrelated. On 4 April 2013, the distance and altitude flight restrictions were lifted after the F-22 Combined Test Force and 412th Aerospace Medicine Squadron determined that breathing restrictions on the pilot were responsible as opposed to an issue with the oxygen provided.
Variants
- YF-22A – pre-production technology demonstrator for ATF demonstration/validation phase; two were built.
- F-22A – single-seat production version, was designated F/A-22A in early 2000s.
- F-22B – planned two-seat variant, but was canceled in 1996 to save development costs.
- Naval F-22 variant – a carrier-borne variant of the F-22 with variable-sweep wings for the U.S. Navy's Navy Advanced Tactical Fighter (NATF) program to replace the F-14 Tomcat. Program was canceled in 1993. Former SoAF Donald Rice has called the possibility of the naval variant the deciding factor for his choice of the YF-22 over the YF-23.
Derivatives
The FB-22 was a proposed medium-range bomber for the USAF. The FB-22 was projected to carry up to 30 Small Diameter Bombs to about twice the range of the F-22A, while maintaining the F-22's stealth and supersonic speed. However, the FB-22 in its planned form appears to have been canceled with the 2006 Quadrennial Defense Review and subsequent developments, in lieu of a larger subsonic bomber with a much greater range.The X-44 MANTA, or multi-axis, no-tail aircraft, was a planned experimental aircraft based on the F-22 with enhanced thrust vectoring controls and no aerodynamic surface backup. The aircraft was to be solely controlled by thrust vectoring, without featuring any rudders, ailerons, or elevators. Funding for this program was halted in 2000.